
Distributed Simulation of Transport Networks

Rowin Andruscavage

University of Maryland, College Park

Systems Engineering Master's Thesis

ENSE 799 Fall 2005

Dr. Mark Austin

Table of Contents

Purpose

This project serves to realize a distributed simulation designed during the
course of the systems engineering master's program. The program will take a
systems approach to modeling human habitats and the multi-modal transport
networks that keep them running. This simulation framework would be used to
create a baseline model of current day capacity, and then used to model the
effects and quantify the benefits of investments in future infrastructure.

The distinguishing characteristics of this simulation framework includes:

● a hierarchical level-of-detail organization that allows available data from
both top-down parametric models to interact with data generated from
clusters of detailed simulation objects. This allows us to seed detailed
objects in a subsystem using available aggregate data (e.g. Using data
on the total gallons of fuel consumed by an airport per month and
distributing that consumption across the aircraft that use that airport)
and compare it to data generated by tallying up the individual fuel
consumption of those aircraft. This would help calibrate the model by
quantifying the effects unknown fuel flows, such as waste or other fuel
sources. The hierarchical organization also makes the simulation
easier to partition across distributed compute nodes.

● Rigorous balance and accounting for matter, energy, resource, and
waste products across control volume boundaries. This is to keep us
honest and avoid sweeping data under the rug. All input and output
resources going into and out of any subsystem will show up in the final

accounting, and conversions and reactions within the subsystem's
components will always be balanced according to conservation of
matter and energy laws, ensuring that an unwanted waste byproduct is
never “dropped” out of the simulation, or energy required to power a
conversion or transaction comes out of nowhere. (Of course, it's still
possible to simply underestimate the amount of fuel necessary to move
cargo from point A to point B, but that's what the calibration against
actual data is for).

Inspiration
Well, it all goes back to the meaning of life, doesn't it? We're all hanging

around, looking for love or money or happiness, always trying to get the most out
of life, and optimize our existence in some fashion. The optimization part is
where simulation can be a useful tool, as we often disagree on what systems
infrastructure improvements we could make in order to make us happier or richer
or work not so far from our loved ones.

Most of our interactions with the urban environment in which we live involve
transportation and delivery systems. These take many forms, ranging from
various ground, air, and subterranean transit networks to power, water, and even
information distribution infrastructure that feeds directly to our homes. Much of
this infrastructure is put in place with funding or regulation from government
agencies at national, state, and local levels.

During these times of rapid modernization, traditional governments can be a
bit slow figuring out what infrastructure to invest in. Simulation is one tool that
can come in handy to help quantify the benefits of different operational concepts.
This analysis can be used to answer questions about design options. For
example, to see whether the resources saved by restructuring, say, alternate
water or package delivery systems justifies the deployment and maintenance
expenses.

Need for arcologies – self-sufficiency
What main characteristic might distinguish something called an “Arcology”

from any other urban construction? An Arcology would take a more systems-
oriented view towards design and operation. No matter what other goal the
development was targeting, whether that might be high population density by
stacking up living spaces vertically, or ecological conservation by reducing and
recycling as many of the waste products as possible, or simply just reducing
pollution through architectural planning and landscaping that encourages walking
over driving between locations, I would contend that the main feature that they all
hold in common is a heightened sensitivity to the use and interchange of mass
and energy between their outside environment and within themselves. In order
to determine whether the development has reached any of these goals, we

would need to place more emphasis on determining what passes across the
imaginary system boundaries and between components. And with better
awareness of what we take and what we dump back into the surrounding area,
we might be able to take measures that would make us more self-sufficient.
Once we have economical technology to give us self-sufficiency, we might even
have a chance at tackling some of the world problems stemming from contention
for limited environmental resources and other factors that threaten our existence.
These would include the standard run-of-the-mill end-of-the-world stuff, like war,
famine, solar heat death, or our inability to eventually establish a working colony
in outer space. But in more near-term practicality, we'd see expect to see our
per-capita energy bills go down too.

Arcologies in history, media
● Current works

Chinese, Tokyo arcologies, mixed-use developments in DC area

The closest present-day developments resembling arcologies are smattered
around the world in various stages of completion. The truest to spirit arcology
project in existence would be Arcosanti and Cosanti, the experimental
communities arranged by architect and founding father of the “Arcology” concept
Paulo Soleri himself. These small scale experiments in the Arizona desert are
currently reported to be hovering around 5% complete.

The largest scale proposals have been cropping up in population-dense areas
in Eastern Asia. A construction company has been promoting Tokyo's Sky City,
covered in a Discovery Channel Documentary. Several proposals also exist for
Chinese cities like Shanghai

● Preliminary requirements -

● Groundwork behind “wouldn't it be cool if...”

● Open-source blueprints/guidelines/standards as well as defining areas to take
artistic license with

● Governance, hive-mind

Implementation Plan
The simulation will be built upon the open-source Dartmouth Scalable

Simulation Framework (DaSSF). This provides a solid but flexible core discrete
event simulation environment that should also make the simulation portable to
other DES engines that adhere to the SSF standard. The SSF standard is
primarily used to simulate data networks at the moment, but there's no reason
the framework couldn't be used to create simulations of (simpler) physical
systems.

I'll shy away from using the Ilogix Rhapsody UML-to-code IDE for developing
the simulation, since I no longer have a licensed version of the software, and it
was really more trouble that it was worth at the time anyway. Plus it would have
involved reverse-engineering hooks into the DaSSF code to do properly. The
object-oriented code used to build components will attempt to remain as true to
the original UML diagrams as possible, though.

The simulation basically boils down to an accounting of conversion and
transaction events that move resources between themselves and their
environment. Therefore, most of the coding involves making and managing
container objects. Building from the ground up, here's the implementation plan:

1. Resource containers are the most elementary class. They merely have
to choose an identity, and store a number representing how much of
this resource the owning object has pooled together. It needs getter
and setter functions, and a master dictionary for looking up other useful
properties associated with that type of resource (such as density, ,
market value, etc.) that might be used for various other calculations.
Money and information are considered resources as well for tracking
purposes, but they basically constitute an “activation energy” for a
reaction or transaction to proceed, so are treated somewhat differently.

2. Reactors come in various forms and are intended to provide balanced
conversions from one set of resources to others (often waste).

3. Cell objects are the hierarchical units. These will be the most complex
but most useful class used in the simulation. They each can contain
some combination of:

1. resources

2. reactors for converting internal resources from one to another

3. buffers and constraints on the amount of resources they can hold
before having to push them elsewhere

4. parent, child, and peer cells with which to interact, such as by
scheduling transactions and reporting metrics up and down their
chain of command.

5. internal agendas used to schedule reaction and transaction events.

4. Connective meshes define which cells can actually interact with each
other, representing the function and capacity constraints of various
transport networks that move resources between the cells in the
system. They can exact a cost (in terms of money transactions and
resources consumed.

5. The instantiation framework is what reads the scenario file and begins

to create cell objects and set up the simulation. This is where a
modeling language would come in.

6. A reporting engine collects data from the simulation at desired intervals
and needs to be programmed to extract useful data and analyses from
the simulation.

Operational Concept
What potential uses could this transportation network simulation have? The

types of problems I hope it will be useful for is demand generation. Different
types of transportation infrastructures could be evaluated against each other to
determine how well they meet that demand. Many existing transportation
optimization problems tackle ways to increase throughput or capacity. But the
task of urban planning should focus more on minimizing demand in addition to
maximizing capacity. For example, instituting staggered work hours or
telecommuting programs can relieve peak rush hour traffic congestion without
spending a fortune widening highways and building additional infrastructure just
to handle a few hours of peak usage a week. It would be nice to know how
much incentives to provide to encourage employers to implement flexible work
hours, or how much to invest in telecommuting infrastructure (such as municipal
broadband) in order to provide productivity benefits similar to simply adding
highway lanes or additional thoroughfares.

Also, by simulating demand, we can create a transportation system that is
more sensitive to individual needs rather than the aggregate flow of travelers.
This would allow us to create schedules around the traveler’s itinerary rather
than forcing the traveler to always plan around fixed train, bus, ferry, and aircraft
timetables. For instance, if everyone starts work exactly at 8:30, but buses only
run hourly on the hour to that particular stop, then the extra half hour everyone
spends waiting per day essentially counts as extra commuting time in their
books, even though the bus operators might only measure the time the
passenger spends sitting on the bus and perhaps waiting for known connections.

An advanced busing system that dynamically generates routes and schedules
based on individual source and destination requests from each passenger could
achieve efficiencies and meet customer requirements far better than what we
have today, and could make public transportation more attractive to people who
drive their own vehicles in order to maintain that degree of flexibility. During
peak commuting hours, this has the potential to reduce individual commute
times, as buses could be scheduled more like express routes and fill up at one
location and proceed directly to stops at a common destination with minimal
stops or transfers or jaunts down back roads along the way. During off-peak
hours, buses would not run nearly empty along the same routes with very low
frequency, but would run on demand, cutting down wait times and making them
a more convenient option for midday or late night errands. An effective public

transportation system should make a metropolitan area “smaller”, where each of
its districts are easily accessible for connecting places where people live, work,
and go for necessary errands and entertainment. Under the current hub and
spoke paradigm, unless your source and destinations are near hubs or just down
the street, travel on the system through two hubs can take up a significant
portion of time. This time would typically consist of at least 5-10 minutes of
waiting for each connection and perhaps 10-20 minutes riding each segment;
the result being that driving independently in one’s own car would take between
half or even a quarter of the time that the trip would take on public transit, even
with traffic. For commuters, this time savings doubles, so it is of little surprise
that most commuters prefer to spend the extra gas, auto maintenance, and toil to
gain 1-2 hours of family time at home a day. Public transportation systems could
still use a lot of improvement to make mass transit desirable over driving, rather
than just an alternative to driving that merely relieves congestion on the
roadways so that other drivers end up with a better traffic experience.

What defines a good inter-modal transit system? The conflicting goals might
be characterized as: speed, response, coverage, and efficiency.

● “Speed” refers to how fast the transit system can get a passenger or
cargo item from point A to point B. Unfortunately, this does not depend
entirely on the cruise speed of the vehicle alone, but also time spent
making transfers and additional preparations (such as passenger
check-in and luggage screening at airports)

● “Response” refers to the frequency of service, particularly how well it
matches and meets demand. Extra time that people have to wait at
their source or destination should be counted against the system…
though this is almost always overlooked in transit performance metrics
today. The data just isn’t available, or people have relegated
themselves to adjust their schedules around the system’s timetables.
This “response” metric will usually be at odds with efficiency due to
economies of scale, since making passengers wait longer times
between pickups can cluster them into larger groups.

● “Coverage” refers to how well the transit system covers the service
area, which should include how far people have to walk from their
doorstop to enter the system. Broad coverage is more difficult to
achieve for a mass transit system, especially as population density
decreases and residences and businesses are more spread apart.

● “Efficiency” might refer to two terms: that in terms of frugal monetary
spending on operating costs and fixed infrastructure investments, as
well as in terms of conservation of fuel and resource utilization.
Efficiency pretty much always counterbalances against each of the
three other goals, so we often must express how much extra money or
fuel we are willing to expend for whatever modest gains in speed,
response, or coverage.

The main way we’ll be able to improve efficiency (aside from simply improving
fuel efficiency) would be to use existing resources smarter – through extensive
use of optimization. With enough planning and foresight, optimal scheduling is
straightforward to perform. However, things never quite go as planned, due to a
variety of unpredictable factors such as weather and accidents and just plain
last-minute changes in schedules. In order for the optimal plan to be of much
use, we ought to continually collect enough data in real-time to monitor and
reevaluate schedules as able. This requires that we have a communications
system in place that allows us to poll the status of our cargo, passengers, and
transportation vehicles. Equipage for this type of system would have been cost
prohibitive in the not-too-distant past, but now that geolocation devices, mobile
computing, wireless networking, and cellular data network backbones have
become nearly ubiquitous, we’d be silly to not put all this capability to good use.

So instead of having fixed timetables locked down and set weeks, months, or
even years in advanced, based only on projections from previous observations of
seasonal, aggregate flows of the past, and barely ever followed to the minute, we
could perform schedule optimization on actual data. This data would factor in
individual requests from each customer, including their destination and schedule
constraints (or better yet, their schedule flexibility). Vehicles could report their
current location and status, meaning they’ll always be right on time – especially
since they could report their arrival time themselves. Monitoring and reporting of
deteriorating road or weather conditions could automatically update the
schedules of every vehicle in the network to account for and mitigate the effects
of new delays.

In order to operate in an inter-modal fashion, however, different segments of
bus, rail, and even taxi and aircraft platforms must be able to exchange data with
each other in order to feed the formulation of the global optimization problem.
This also needs to interoperate between multiple jurisdictions and carriers, who
will still want control over their own vehicle resources.

What kind of features would such a schedule collaboration system need to
make a diverse set of platforms interoperate? First of all, we need to define a
common language used to publish and exchange schedule and status data.
Next, we would want to define schemas representing the types of data that are
actually required, desired, or merely expressed as comments for general
informational purposes. Some of the properties desired by this scheme could
certainly be handled by an data representation framework like that provided by
XML (extensible markup language):

● It should have a standard set of tools for processing and manipulating
the data, a la XML’s parsers and stylesheet transformations.

● The data representation format should be extensible, allowing newer
versions of software to introduce new data types and tags without
breaking older software that doesn’t expect or understand the
additional data. In a similar vein, older software in the system should

still preserve these newer data structures in messages that it passes
along between other, perhaps newer or more capable software
components that understand and can make use of it.

● The schemas should be centrally version controlled and available for
verifying data types, etc.

This language feature set would allow different organizations to continue to
share and integrate their logistics information, even as the set and functionality
of the data schemas grow, change, and evolve over time. Incremental additions
can be introduced, such as adding field for, say, the error or uncertainty
surrounding a predicted arrival time – information that we might not be able to
make good use of now, but could give us tangible benefits once we learn to
process it better. Major version changes that alter the meaning of data fields in
ways that are fundamentally incompatible with earlier versions could be
introduced and managed by a central standards body, while a set of standard
transformation filters could be provided to convert as much data between major
revisions as possible.

As an exercise, let us consider some of the data elements we would want a
schema to include that would lend themselves to a good schedule optimizer.
Each of these values of interest might need to be expressed and measured in
different forms, to indicate whether their values have been projected from
previous data, predicted based on current known conditions, or are the actual
measured values after the fact. Additionally, projections and predictions would
want uncertainties attached to them in order to be of use for contingency
planning.

First off, we will list out the information a passenger or piece of cargo wishing
to traverse the system would want to convey to us. The simplest schema would
consist of a source location, a destination, and a desired time of arrival or
departure. But much other information could be collected that would be of use:

● Unique identifier: every database needs to refer to its elements by
some unique ID at some point. Many privacy rights activists cringe
every time a system forces them to assume one that is traceable back
to them. It’s beyond the scope of this paper to address the
requirements of what can or cannot be gleaned or pieced together by
data mining this information. But suffice it to say that privacy and
security concerns could be met by currently existing encryption, digital
signature, and authentication technology. As an example, suppose that
after payment, a unique system identifier was associated with an
encrypted, one-time signature generated by the passenger’s private
key. Only that passenger would be able to decrypt the digital fingerprint
that associated their personal identity information with the unique ID
stored in the passenger roster. They would be able to prove that it was
them who generated that unique signature ID at a later time, say, if they
needed an alibi. However, government or private entities that

somehow got a hold of the passenger roster wouldn’t be able to runs
searches, such as “give me a list of all the people who traveled to this
shopping mall” or “list all the places John has traveled to lately.” For
more restrictive governments or law enforcement / monitoring agencies,
all or part of this data could be exposed through a key escrow system.
The point is all of this framework exists and should be set up from the
inception of the system, since the security and authentication model will
likely be deeply ingrained into how the rest of the software systems
operate. The main problem that most privacy advocates see is that the
minimum basic anonymity safeguards are simply not being deployed
into the systems of today.

● Schedule constraints / flexibility : optimization thrives on having some
slack or flexibility in its constraints. We could achieve more optimal
schedules if only passengers could more adequately express things
like:

● What range of times could they be expected to arrive at their
destination? Not later than 9:00?

● How much extra would they be willing to pay to reduce their time
in transit, say be giving them preferential treatment in the
schedule optimization algorithm? In the same vein, would any of
them be interested in paying less to reduce their “pull” on the
scheduling algorithm, so their scheduling might flow around
“hitchhiking” economically around the empty seats left over in
schedules generated to server passengers paying for higher
priority routing?

● What kind of safety factor or time buffer are they comfortable
with? Would they be willing to run through an airport to make a
tighter connection?

● Accessibility needs : handicapped passengers could make special
requests to suit their situation. This could help budget transfer time
and resources better. For example, instead of equipping all of the
vehicles in a fleet with minimal accessibility features at great expense,
a bus system could have 5% of their fleet be fully equipped and serve
handicapped passengers as their first priority.

Cargo would have much of the same properties as passengers, perhaps a few
more to encode other special handling instructions, hazmat designations, and so
forth. As cargo might spend significantly longer stretches of time in the system
between warehouses and transfer stations, they might have more stringent
tracking and tagging requirements, as well as more flexibility in routing
preferences, especially between low priority bulk and high priority overnight
shipments.

FIXME: Cargo security via digital signatures, accountability.

Having all this passenger and cargo data pretty much takes care of knowing
the transportation system inputs. The next set of standardized data should
describe how the transit network itself is set up to handle the demands placed on
it. Every transit system could be expressed as a network, so we will liberally
apply terms from the networking field to describe some of these concepts. The
first assumption we’ll have to make is that any transit system could be expressed
and modeled as a collection of nodes and connector links. They might vary
significantly in complexity and level of detail between transit systems, but they all
need to be able to “plug in” to each other for intermodal optimization to work
properly.

FIXME: network diameter, node degree

A simple light rail or tram network might consist of a few dozen stations
connected by a single track. On the other end of the spectrum, a metropolitan
road network modeled in detail would have thousands upon thousands of
connective paths, links to probably all of the other nodes of transit, relatively few
fixed source and destination nodes, and likely not enough user planning data will
ever be made available to predict traffic congestion resulting from construction,
weather, accident, or just plain rush hour delays.

In any case, the minimal elements needed to represent this transportation
network would include:

● A unique node identifier

● A geographic node location, represented in a standard reference frame
such as the WGS-84 latitude, longitude, and altitude used by the GPS
system.

● A connectivity matrix, minimally of transit times between node pairs. A
special value would indicate that certain node pairs (probably most of
them) are not connected at all. This might even be digested from much
more complicated routing algorithms, such as street navigation
systems. The connectivity matrix will need adjustments over time, to
schedule in planned closures for maintenance, or new routes opening
up at particular times.

● Buffer and storage nodes, such as maintenance bays or taxiway
queues. These might have special properties with regards to what can
and cannot take place.

In order to finally traverse this network, though, a transit system ultimately
needs some set of vehicles (though many parts of a transit network might be
represented as walkways on foot, which we might as well model too in order to
help design capacity for escalators, moving walkways, ticketing and security
checkpoints… perhaps even to make sure hallways and doorways are wide

enough to meet capacity and fire codes). Each vehicle would have associated
with it:

● A geographic location within the network, whether it was a geographic
location in transit, at or waiting for arrival at a station node, or even
occupying a storage or a maintenance bay.

● A passenger or cargo capacity

● A set of rules governing how fast it can navigate its network, how long it
takes to load and unload, etc.

● Various maintenance details, such as fuel supply, crew refresh
schedules, and at least some indicator of the probability that it will
reach its destination without breaking down along the way or running
late for some other reason.

The system would need a way to introduce its own arbitrarily fixed schedule or
other constraints. This could be required merely as a way to allow legacy
timetable-based systems to nominally interact with the optimized system. While
we could squeeze a more optimal solution by imposing fewer constraints, for
various reasons (such as lack of equipage to perform last-minute reroutes), we
need some way of communicating and enforcing pre-existing schedule
constraints. In the end, this probably isn’t any different than the mechanism we’d
use for introducing scheduled maintenance stops.

The last major category might include “environmental” factors that would affect
the performance of the system. These factors could either be predicted in
advance with some degree of certainty, or suddenly evolving events such as
accidents or breakdowns that require a reformulation of the optimization problem
to mitigate.

Weather conditions can have a predicable effect on a system. Updates on
rain or snowstorms should be able to make their way into the system so it can
plan on having some degree of constrained capacity in advance. Airports can
plan to shut down for a few hours while “convective weather cells”
(thunderstorms) pass by overhead. As better forecast data has become
available, air traffic control centers have actually been able to institute ground
delay programs for aircraft all the way at their points of departure, so they don’t
end up circling in holding patterns near the destination airport, waiting for the
inclement weather to abate. Such contingency planning based on externally
available data could make their way into streamlining other forms of
transportation, albeit less dramatically.

These types of entries will manifest themselves by time-dependent changes to
the network connectivity matrices. Each cell would have a probable new value
for transit time on that link, accompanied by probable start and end times of the
effect.

We live in an uncertain world. How will the system deal with uncertainty and
unexpected events in schedules? Probability should be built in to the
optimization problem formulation, and one of the goals of the optimizer might be
to minimize the impact of unfavorable (but probable) events. Analysis of
historical records can generate performance metric associated with each vehicle,
route, weather prediction, etc. A useful way of representing on-time
performance probabilistically is to reconstruct the data from the cumulative
distribution function (cdf) associated with the prediction. This would work much
better than simply providing means and standard deviations, since most transit
data is so skewed towards being late than being early. It’s much easier to break
down and be several hours late, than to speed across a transportation link in
record time. The cdf can be quantized to reduce computational complexity, at
the cost of adding extra conservative wait time buffers between connections.

FIXME: figure 1

While this type of data will be monitored and collected, only certain parts of the
tail will interest the schedule optimizer.

FIXME: figure 2

We’re primarily interested in what time the vast majority of the vehicles will
arrive, as well as what hopefully small percentage are beset by schedule-
impacting delays. There’s no fixed “magic percentile” that would determine how
much extra buffer time to schedule to make sure everyone makes their
connections. This will likely be set arbitrarily at the beginning, as all of these
factors contribute to an overall “confidence in planned schedule volatility” metric
(maybe more easily expressed as an opposing “schedule stability” metric). With
the optimizer system, we can recompute new schedules whenever an
unexpected event comes up – such as when a vehicle is delayed enough to fall
on the tail end of the cdf and it misses its connection. The optimizer can take
that new information into account and simply create a new schedule based on
these existing conditions – which will likely result in diverting other vehicles over
to take care of the late straggling passengers. So the risk analysis that
determines how aggressively to schedule extra buffers into the system would
depend on how much impact a schedule recovery plan would have. Planning in
large buffers to reduce risk likelihood means extra wait time for passengers and
more idle time for vehicles in order to ensure that the schedule stays stable. The
ability to drastically reduce these buffers means the whole system could run at a
faster pace. If the cost of recovering from missed connections is low – say to
catch a subway train that runs every 5 minutes – then the scheduler can
comfortably deal with smaller buffers and higher schedule volatility risk. In the
case of an airplane network where flights run between cities maybe once or
twice a day, a missed connection would mean putting people up in hotels or
chartering additional make-up flights. In this case, increased schedule
awareness can also help by figuring out the total impact on whether it’s even
worth holding flights for latecomers to make their connections.

FIXME: figure 3

So in addition to the overall transportation system performance optimization
goals we discussed in [FIXME: Ref], we also want to introduce some practical
optimization goals that will help the scheduler intelligently create and maintain
buffers to deal with uncertainty. Now, how to formulate and computer this
enhancement is beyond me, since it would likely require the optimizer to do risk-
impact assessments on every combination of missed connection. But that’s no
reason to shirk away from providing the necessary information about on-time
performance in the data protocol now, so that future generations of engineers
could tackle it.

The final category of optimization constraints would come from the operators
of the various transit networks. This would allow them to add crew and
maintenance schedules, such that they can pick up and drop off drivers, pilots,
and other staff at certain locations, or make sure that a vehicle ends up in a
certain maintenance bay every so often for refueling and service.

These constraints are typically easy to add without a lot of heartburn, since
they tend to help reduce the number of branch and bound paths that a mixed
integer programming optimizer needs to search through to converge on a
solution – at least as long as the solution remains feasible. The challenge
comes in that expressing these constraints should be the job of the separate
transit network organizations, and the abstract protocols needed to express
these constraints would likely require extensive knowledge of how the global
optimization problem is formulated and solved. It is undesirable to have this
information format coupled too closely to the formulation, since it will make it
more difficult to change and upgrade the optimization engine in the future. We
don’t want to force everyone to have to radically change their code at the same
time throughout the system every time we want to introduce an incremental
upgrade. We also don’t want the entire systems upgrade to fail because of one
or two late development efforts. We want enough abstraction built in so that they
might make changes at their own pace to take advantage of new scheduling and
optimization features and capabilities. Their abstract representation of their
constraints needs the ability to compile itself so it can be applied to both the old
and the new versions of the optimization formulation.

Unfortunately, I’m not able to come up with a language abstract enough that
would allow the businesses to express what maintenance needs a generic
optimizer must meet, without cheating and taking advantage of intimate
knowledge of the formulation and the meaning of its various variables. A
sophisticated abstraction language processor would have to take the expression
and transform them into equations that relate particular variables to each other
or to newly introduced variables. This processor would likely be nontrivial to
implement and be prone to unexpected behaviors and errors. So a more
practical way to handle crew and vehicle maintenance schedules would have the
operators compute maintenance schedules separately from the main globally
optimized schedule, and insert them as fixed constraints using the legacy

scheduling interface. The end result of performing iterations of this would not be
as optimal as if the global optimizer took maintenance into account. But at least
it starts close to an optimal solution, and provides our necessary layer of
abstraction. The iterations would proceed something like:

1. Transit network operator would provide the number and current
locations of available vehicles at the beginning of the day

2. The global optimizer takes the customer demands and those initial
conditions, and furnishes the schedule desired of that transit system.

3. The operators manually (or semi-heuristically) tweak the schedule to
ensure that particular vehicles end up in nearby maintenance bays
when they’re due. These get fed back into the global optimization as
constraints.

4. The global optimizer find a new solution taking these new constraints
into account, filling in new gaps in the schedule and hopefully not
straying too far from the original optimal objective function result.

This would let us converge on a solution set somewhat near the optimal one
that takes maintenance factors into account without tying down the programming
to a particular implementation of the optimizer.

A global optimizer that did include operator goals and scheduling constraints
isn't out of the realm of possibility, however. Additional complexity could be
added by allowing these third parties to add their own set of constraint
statements, even weighted objective functions. Some discipline would still be
needed to keep the system stable. In the original form, the problem is
formulated in advance, and the data provided by passengers and schedules add
constraints in a consistent manner – the worst thing we should need to worry
about are infeasible solutions. However, by allowing third parties deeper control
of objective functions and constraint statements, we're exposing the system to a
host of potential problems and vulnerabilities:

● Malformed or even malicious statements can make the problem
intractable. There may be ways to identify some offending statements
and automatically detect and flag them to somehow alert or even filter
them out of the calculations – but the latter approach could likely create
unpredictable results.

● We'd need ownership and permissions on variables to separate the
components provided by different parties. This would ensure that
operators don't introduce constraints that could penalize their
competitors.

● FIXME:REDUNDANT It would be nice to have that abstraction
language and processor, so we wouldn't have to force everyone to
recode all of their logic statements at once every time we want to

upgrade the problem formulation.

● Many companies pride themselves on their own optimization
capabilities. We may need a mechanism to protect proprietary
information about their mode of operation revealed in their contributed
code statements. We could allow them to submit “black box” modules
that manage to interact properly with the rest of the global optimization.
An alternative method may be to partition the problem such that they're
entirely responsible for optimizing their segment of the global
calculation, interacting with the rest of the system through the input and
output protocols.

Hopefully these reasons (and probably others) have helped to articulate why I
haven't addressed these issues in the current incarnation of this thesis. But this
might be the beginning of an outline to tackle these considerations in the future.

Computational Considerations
Large scale global optimization can require a lot of computing power. It falls

under the class of NP hard problems that scale exponentially with the number of
transit nodes we add to the transportation system. Let's look at some of the
ways in which problems of this size can be tackled.

The solver should be set up to run in parallel across several CPUs, scaleable to
a massive clustering system. Many linear and mixed integer solvers have the
capability to run on this type of platform, so it's not something we have to worry
about directly.

We still would need to resort to a host of other tricks to reduce the
computational complexity enough to approach any problems of any appreciable
size. Most of them involve introducing some sort of constraint to reduce the
number of branch and bound paths search in the solution space.

● The easiest way to reduce the computational complexity is to partition
the problem into smaller parts. Since these types of "traveling
salesman" problems scale exponentially with respect to the number of
nodes, the number of branches to search would be drastically reduced.

● Adding link constraints is also another way of reducing the search
space. Not every node needs to be linked to every other node. So
often we will resort to building a connectivity matrix to define which
source nodes can get to which destination nodes. With road and rail,
only adjacent nodes are directly connected. Distant nodes would
requirer transit through other city or station "nodes"

● With aircraft, of course, most vehicles can travel directly from any node
to just about any other node in the network. In this case, it may be
helpful to add "max connections" constraints, to keep the system for
searching through impractically long schedules. An itinerary that made
a passenger jump between more than two or three connecting airports

would likely be rejected by that person. Of course, low priority bulk
cargo may find some advantage through waiting for these multiple
connections, filling in otherwise "empty" space leftover on any flight
where the opportunity arose to get it slightly closer to its destination.
But at some point all of the extra handling and transfer overhead ought
to outweigh whatever small price break.

● Just about any schedule constraint that would help "lock down"
otherwise free-floating variables would help reduce the search space.
Feeding in initial conditions - like the current location of the fleet, or
stops that must be made by a certain time (for example, to ensure
buses take all passengers to a stadium well before a game starts)
would help speed the optimization along.

● Sometimes it may be necessary to simply add other heuristic or even
arbitrary constraints to help the system converge on a solution. Many
of these constraints probably won't even affect the solution, but
constrain the search space enough to allow a much quicker answer.

All else failing, many mixed-integer programming solvers also allow "good
enough" solutions to be given without a complete exhaustive search of the
solution space. Modern MIP solvers can be pretty clever about searching the
"most promising" paths first, so completing the entire exhaustive search would
yield little improvement on the objective function. Of course, this technique only
applies if a feasible solution is found at all.

Finally, a sophisticated optimization would involve precomputing most of the
possible schedules in advance., and then have the ability to account for the
effects of small changes with only minimal recalculation of the final optimal
solution. This type of incremental adjustment may be necessary to recover from
small, unexpected schedule breakdowns. Suppose a vehicle suddenly
announces that it will be arriving 30 minutes late to a hub node. If recomputing
the entire optimal solution taking this new information into account would take a
few hours of number crunching, we obviously don't want everything to grind to a
halt while waiting for the scheduler to tell us what to do next. An "incremental
update" to the solution performed with minimal recalculation might be achieved
by determining which vast majority of system variables shouldn't be affected, and
formulate a highly-constrained optimization problem that only searches through a
small set of variables affected by the unexpected change in one or two schedule
input values. We'd need to develop a heuristic to determine exactly how far out
this limited set of "affected variables" should reach.

Another scheme might involve jumping back into a snapshot of the state of the
large optimization and only recalculate internal values that have changed with
the modified inputs. Perhaps some solvers have this ability.

So what can we do once we have a coupled system of transit networks, a
simulation of that system, and an optimization framework that can set up
schedules for the simulation (or the actual system) to evaluate? We can set up
yet another iterative optimization – this time of the actual system configurations

and not just one schedule. This will help us evaluate urban design and
infrastructure in ways that should help drive progress towards efficient and
sustainable societies that serve the people who live in them. We can propose a
new construction or infrastructure project, show its benefits in a simulated model,
and later validate those benefits using data collected from the real system.
Competing models for improvements might even have the chance to provide
benchmarks using the same methodology.

FIXME: Insert diagram

The ability to compare several optimization components, several system
structures, different modeling methodologies, all using the same data
interchange format to facilitate direct comparisons between both real and
simulated evolution of the scenarios, allows us to take a systematic, objective
approach to tackling urban improvement projects. Adapting such a simulated
and real system performance comparison framework will allow us to have more
complete impact assessments by making sure every study or proposal is
analyzed consistently, using the same inputs, and doesn’t sweep away or ignore
unwanted side effects and consequences. Urban planners could use these
studies to provide ammunition for driving changes toward the way they envision
their communities. And the focus on operational efficiency and continuous
improvement driven by pervasive measurement and analysis will lead towards a
leaner, sustainable society where more resources could be directed towards
forward progress instead of consumption.

Several initiatives are currently underway to rethink the way metropolitan areas
are designed. This simulation modeling & analysis framework can help
accelerate the worthwhile changes.

The urban development paradigm of roughly the last century has been
characterized by suburbanization. Massive superhighways were built between
cities while suburbanite families sprawled out along these corridors. As the
space between these corridors filled out and the main thoroughfares became
congested, more highways were built to relieve congestions. However, after a
certain point, the ratio of highway space to developable, livable area becomes
saturated, and you get diminishing returns from building more roadway
infrastructure. Highways take up a lot of space, and when we start to pack those
highways close together, we end up spreading out actual useful land into
isolated pockets nestled between interchanges. The more complicated the
interchange between multiple highways, the larger and more funded the
construction project gets. What’s more, having multiple highways down busy
rush-hour corridors don’t really make the world any smaller. A sparse network of
good, uncongested highways should make it take just as long to get from point A
to point B without having to build and maintain several alternate routes that exist
just to relieve rush hour congestion (I’m thinking of the Baltimore-Washington
corridor in particular, with I-95 flanked by 295 and Rt.29).

References
http://www.ssfnet.org/ Scalable Simulation Framework Research Network

http://www.cs.dartmouth.edu/research/DaSSF/ Dartmouth Scalable
Simulation Framework

http://www.crhc.uiuc.edu/~jasonliu/projects/ssfnet/

http://www.renesys.com/research.html Renesys Corporation

https://gradus.renesys.com/exe/Raceway Renesys Raceway

http://dsc.discovery.com/convergence/engineering/skycity/interactive/interactiv
e.html “Tokyo Sky City”, Discovery Channel

http://www.biospheres.com/ Biosphere 2 Biosphics

http://www.nd.edu/~ndmag/arcosw98.htm John Monczunski “Arcosanti, a
Habitat for Humanity” Notre Dame Magazine, Winter 1998-99

