Air Taxi Operational Control Center

ENSE 626 Systems Life Cycle Cost Estimation Spring 2004 José A. Faria

Course Project Presentation

Rowin Andruscavage Advisor: Abdulaziz Faghi

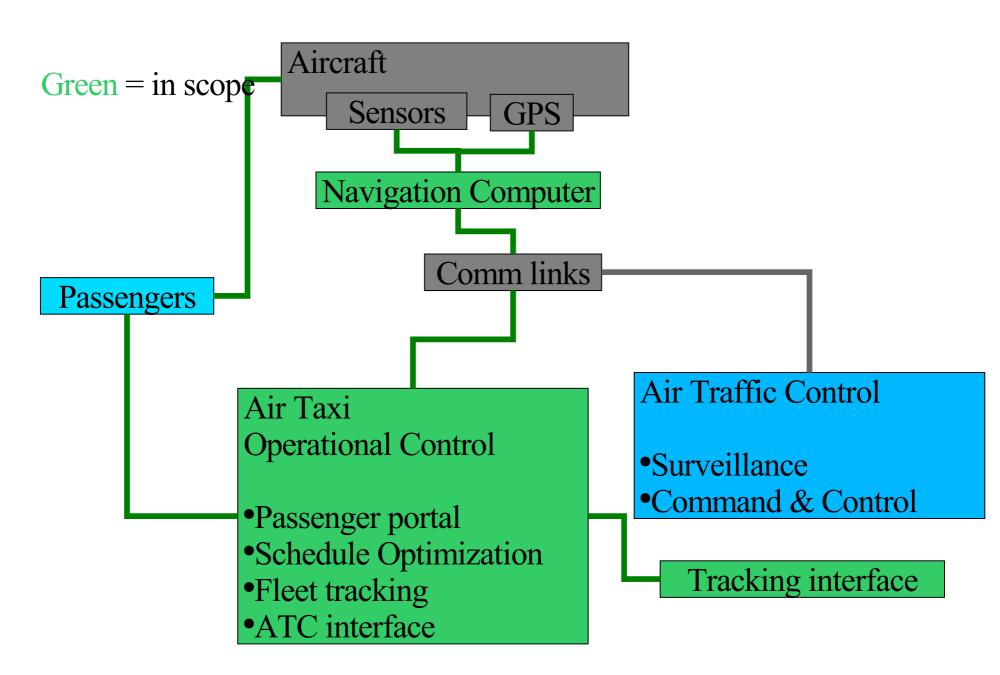
Abstract

- Air taxi services are set to take off. Defining characteristics:
- Small aircraft & regional jets (4-30 seats)
- Direct flights serving both large & small airports
- Computer networks for dynamic scheduling
 Due to some of the following conditions:
- Availability of relatively inexpensive small jets
- Congestion in traditional airlines & hub airports
- Improvements to & privatization of air traffic control towers for extra capacity.

Contents

- Project Estimation Schedule
- Design & Concept
- Scope of Work
- Work Breakdown Structure
- Spiral Development Scheduling
- Risk Identification & Mitigation

http://world.honda.com/news/2003/c031216_2.html


Estimation Schedule

Project Milestone	Week Date Events
Report Intro System Design / Architecture Work Breakdown Structure Spiral Development Scheduling Risk Identification Risk Mitigation	1 02/03/04 2 02/10/04 3 02/17/04 Title Due 4 02/24/04 5 03/02/04 6 03/09/04 Kickoff 7 03/16/04 Midterm 8 03/23/04 Spring Break 9 03/30/04 10 04/06/04 11 04/13/04
Graphs / Data Reduction Conclusion	12 04/20/04 13 04/27/04 Presentations
Graphs / Data Reduction Conclusion	12 04/20/04
Report Document	14 05/04/04 Presentations 15 05/11/04 Final

Concept

- Create an Airline Operational Control (AOC) center to coordinate passenger schedules with fleet schedules
- Define minimum equipage for aircraft fleet, provide "kits" to allow conversions of older aircraft
- Provide additional infrastructure necessary to allow increased air traffic control (ATC) service to smaller airports.

System Design

Scope

- Design, build, & operate control center
 - Passenger portal
 - Schedule optimization engine
 - Fleet tracking
- Provide minimal equipage for aircraft to operate as part of the fleet
- Develop & provide additional monitoring & communications software & equipment, training for controllers

Project Estimation Challenges

- Uncertainty / risk mitigation
 - Handle with parametric market analysis to attempt to put an upper bound on operating costs
 - Scale equipment costs relative to size of fleet

Estimation Tools & Techniques

- Spreadsheet WBS, bottom-up pricing
- Spiral development scheduling
- Risk analysis matrix

Work Breakdown Structure

Cat#	Sub#	ltem#	Cat	Subcat	_		
1			AOC	Hardware			
1	1			Network			
1	2			Servers			
1	3			Operator station			
2			Main	tenance			
2	1			Comm Feeds	4		Aircraft Equipage Kit
2	2			SW licensing	_	1	Nav PC
3			AOC	SW Development	4	2	GPS
3	1			Situational Awareness Display	4	3	Comm link
3	2			Comm/Info Mgmt. Engine	4	4	Sensor package
3	3			Flow Mgmt.	4	5	SW Integration
3	4			Schedule Optimization	5		ATC Equipage Kit
-	5			Passenger Portal	5	1	Monitoring PC
3	6			Maintenance Tracker		2	Comm link
3	7			4D Traj Planner / Tracker			
3	8			Data Interfaces	5	3	SW Integration

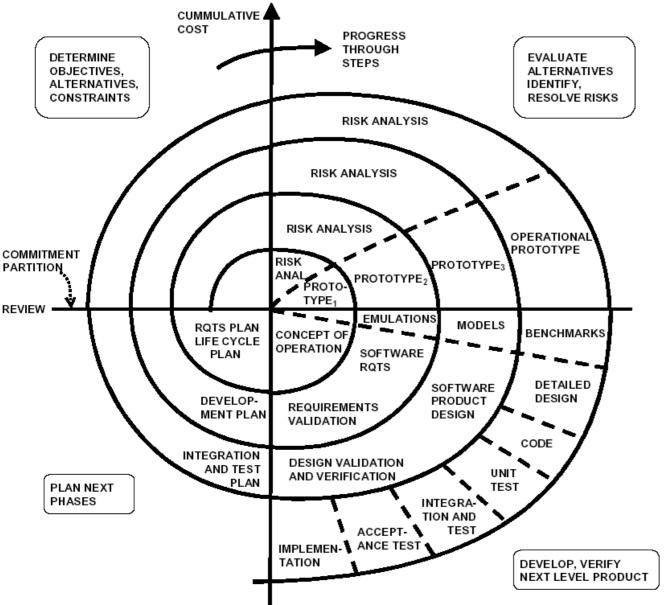
Parametric Estimation

- Relative to size of active fleet
- Airlines' performance usually based on operating cost per seat mile:
 - \$0.12 Large airliners (economy of scale)
 - \$0.07 Newer regional jets (point-to-point efficiencies)
 - \$0.20 Small aircraft (~ \$40/hr)
 - \$1.00 Business jets (~ \$2500/hr)
 - \$0.40 Target

\$10,000 in AOC operating costs per 1,000 passengers. Assumptions:

- AOC costs = 5% of operation
- 5 passengers / flight, traveling 500 miles on average

Revenue Projection


Risk Identification & Mitigation

Type Risk Item	Mitigation	Contingencies
ATC Rejection		
Rejection of AOC terminal		Operational efficiency at mercy of ATC
Rejection of increased operations		Capacity lockout - inability to serve customers
Aircraft Equipment Certification Failure		
Airborne Comm datalink		Use more expensive NEXCOM gear Intermittent comm on ground only
Nav equipment		increased uncertainty in operations, use more expensive certified gear
Untenable Schedule Optimization		-
Insufficient compute time		Require longer lead time for schedule inputs, reduced flexibility in constrained capacity
Unusable solutions		Use suboptimal human operator heuristics
Passenger Rejection		
Safety concerns	Education, data, redundancy features, failure mode demonstrations	Change target market (private pilots, daredevils)
Small airport inconvenience	Political push to improve infrastructure at small airports Partner with service providers	

Risk Matrix

	Consequences	1	2	3	4	5
Likelihood		Insignificant	Minor	Moderate	Major	Catastrophic
5	Almost Certain			4.1; 5.1; 6.2; 9.2	4.3	5.3
4	Likely		9.1	1.1; 2.1	3.2; 6.1	
3	Possible	9.3		3.1		1.2; 5.2; 8.1
2	Unlikely		4.2; 5.4; 7.2; 7.3	2.2		
1	Rare					

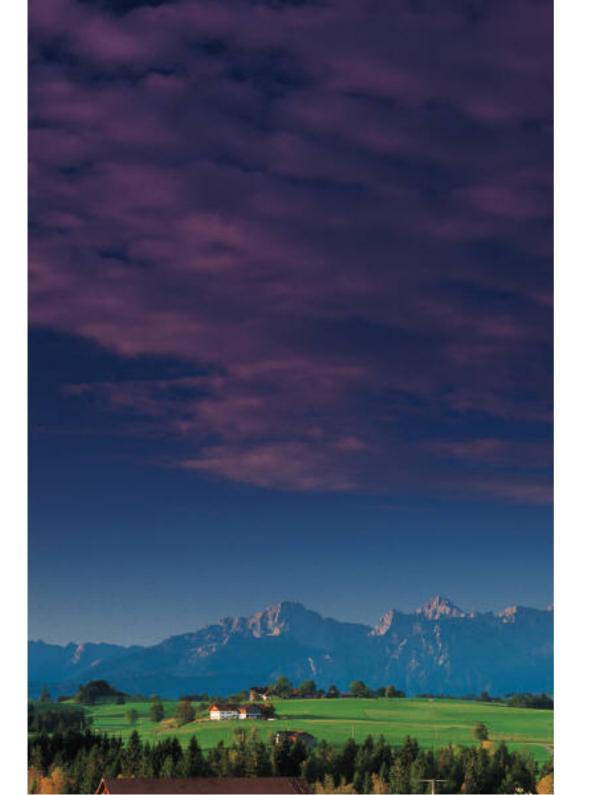
Spiral Development Scheduling

Operational Concept (1m)

1.

- 2. EmulationPrototype (3m)
- 3. Modeling & Simulation (6m)
- 4. Proof-of-concept Demonstration (2m)
- 5. Deployment (6m)

Figure 1: Original Diagram of Spiral Development


http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00sr008.pdf

Life Cycle Schedule Phases

- 1 yr.: set up nominal initial operational capability
- Future cycles (lower-priority design goals):
- Interoperability
 - open interfaces to other technologies & systems
- Incremental upgradability
 - incorporate new technologies
- Scaleable operations
 - distributed (decentralized) control center infrastructure
 - high availability

Next Steps

- Draw out resource-loaded project plan
- Justify Prototyping costs w/ decision tree
- Sensitivity analysis to design variables

Questions?